metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.35D6, C6.22+ 1+4, C23⋊4(C4×S3), (C22×C4)⋊6D6, C22⋊C4⋊51D6, C6.9(C23×C4), D6⋊C4⋊57C22, (C2×C6).30C24, D6.2(C22×C4), C2.1(D4⋊6D6), Dic3⋊4D4⋊39C2, (C2×C12).571C23, Dic3⋊C4⋊58C22, (C22×C12)⋊34C22, C3⋊1(C22.11C24), (C4×Dic3)⋊46C22, (C23×C6).56C22, C22.19(S3×C23), Dic3.3(C22×C4), C6.D4⋊67C22, C23.16D6⋊24C2, (S3×C23).30C22, C23.230(C22×S3), (C22×C6).122C23, (C22×Dic3)⋊5C22, (C22×S3).150C23, (C2×Dic3).177C23, C3⋊D4⋊9(C2×C4), (C2×C3⋊D4)⋊9C4, (C4×C3⋊D4)⋊33C2, (C2×C22⋊C4)⋊7S3, (S3×C2×C4)⋊39C22, C2.11(S3×C22×C4), C22.24(S3×C2×C4), (C6×C22⋊C4)⋊26C2, (S3×C22⋊C4)⋊23C2, (C22×S3)⋊6(C2×C4), (C22×C6)⋊10(C2×C4), (C2×Dic3)⋊10(C2×C4), (C2×C6).18(C22×C4), (C22×C3⋊D4).9C2, (C2×C6.D4)⋊15C2, (C3×C22⋊C4)⋊61C22, (C2×C4).257(C22×S3), (C2×C3⋊D4).88C22, SmallGroup(192,1045)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.35D6
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=f2=c, ab=ba, ac=ca, eae-1=faf-1=ad=da, bc=cb, fbf-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >
Subgroups: 840 in 338 conjugacy classes, 151 normal (21 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, C23, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×S3, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C2×C22⋊C4, C42⋊C2, C4×D4, C22×D4, C4×Dic3, Dic3⋊C4, D6⋊C4, C6.D4, C3×C22⋊C4, S3×C2×C4, C22×Dic3, C22×Dic3, C2×C3⋊D4, C22×C12, S3×C23, C23×C6, C22.11C24, C23.16D6, S3×C22⋊C4, Dic3⋊4D4, C4×C3⋊D4, C2×C6.D4, C6×C22⋊C4, C22×C3⋊D4, C24.35D6
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C24, C4×S3, C22×S3, C23×C4, 2+ 1+4, S3×C2×C4, S3×C23, C22.11C24, S3×C22×C4, D4⋊6D6, C24.35D6
(2 47)(4 37)(6 39)(8 41)(10 43)(12 45)(14 34)(16 36)(18 26)(20 28)(22 30)(24 32)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 25)(12 26)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 37)(23 38)(24 39)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 46)(2 47)(3 48)(4 37)(5 38)(6 39)(7 40)(8 41)(9 42)(10 43)(11 44)(12 45)(13 33)(14 34)(15 35)(16 36)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 26 19 32)(14 31 20 25)(15 36 21 30)(16 29 22 35)(17 34 23 28)(18 27 24 33)(37 42 43 48)(38 47 44 41)(39 40 45 46)
G:=sub<Sym(48)| (2,47)(4,37)(6,39)(8,41)(10,43)(12,45)(14,34)(16,36)(18,26)(20,28)(22,30)(24,32), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,25)(12,26)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,37)(23,38)(24,39), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,46)(2,47)(3,48)(4,37)(5,38)(6,39)(7,40)(8,41)(9,42)(10,43)(11,44)(12,45)(13,33)(14,34)(15,35)(16,36)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,26,19,32)(14,31,20,25)(15,36,21,30)(16,29,22,35)(17,34,23,28)(18,27,24,33)(37,42,43,48)(38,47,44,41)(39,40,45,46)>;
G:=Group( (2,47)(4,37)(6,39)(8,41)(10,43)(12,45)(14,34)(16,36)(18,26)(20,28)(22,30)(24,32), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,25)(12,26)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,37)(23,38)(24,39), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,46)(2,47)(3,48)(4,37)(5,38)(6,39)(7,40)(8,41)(9,42)(10,43)(11,44)(12,45)(13,33)(14,34)(15,35)(16,36)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,26,19,32)(14,31,20,25)(15,36,21,30)(16,29,22,35)(17,34,23,28)(18,27,24,33)(37,42,43,48)(38,47,44,41)(39,40,45,46) );
G=PermutationGroup([[(2,47),(4,37),(6,39),(8,41),(10,43),(12,45),(14,34),(16,36),(18,26),(20,28),(22,30),(24,32)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,25),(12,26),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,37),(23,38),(24,39)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,46),(2,47),(3,48),(4,37),(5,38),(6,39),(7,40),(8,41),(9,42),(10,43),(11,44),(12,45),(13,33),(14,34),(15,35),(16,36),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,26,19,32),(14,31,20,25),(15,36,21,30),(16,29,22,35),(17,34,23,28),(18,27,24,33),(37,42,43,48),(38,47,44,41),(39,40,45,46)]])
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 2L | 2M | 3 | 4A | ··· | 4H | 4I | ··· | 4T | 6A | ··· | 6G | 6H | 6I | 6J | 6K | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 6 | 6 | 6 | 6 | 2 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | S3 | D6 | D6 | D6 | C4×S3 | 2+ 1+4 | D4⋊6D6 |
kernel | C24.35D6 | C23.16D6 | S3×C22⋊C4 | Dic3⋊4D4 | C4×C3⋊D4 | C2×C6.D4 | C6×C22⋊C4 | C22×C3⋊D4 | C2×C3⋊D4 | C2×C22⋊C4 | C22⋊C4 | C22×C4 | C24 | C23 | C6 | C2 |
# reps | 1 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 16 | 1 | 4 | 2 | 1 | 8 | 2 | 4 |
Matrix representation of C24.35D6 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 8 | 0 | 12 | 0 |
0 | 0 | 0 | 8 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 9 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 9 |
0 | 0 | 0 | 0 | 4 | 2 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
8 | 8 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 5 | 2 | 2 |
0 | 0 | 8 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 8 | 8 |
0 | 0 | 0 | 0 | 5 | 0 |
5 | 5 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 5 | 2 | 2 |
0 | 0 | 0 | 8 | 0 | 11 |
0 | 0 | 0 | 0 | 8 | 8 |
0 | 0 | 0 | 0 | 0 | 5 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,8,0,0,0,0,1,0,8,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,11,4,0,0,0,0,9,2,0,0,0,0,0,0,11,4,0,0,0,0,9,2],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[8,5,0,0,0,0,8,0,0,0,0,0,0,0,5,8,0,0,0,0,5,0,0,0,0,0,2,11,8,5,0,0,2,0,8,0],[5,0,0,0,0,0,5,8,0,0,0,0,0,0,5,0,0,0,0,0,5,8,0,0,0,0,2,0,8,0,0,0,2,11,8,5] >;
C24.35D6 in GAP, Magma, Sage, TeX
C_2^4._{35}D_6
% in TeX
G:=Group("C2^4.35D6");
// GroupNames label
G:=SmallGroup(192,1045);
// by ID
G=gap.SmallGroup(192,1045);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,570,80,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=f^2=c,a*b=b*a,a*c=c*a,e*a*e^-1=f*a*f^-1=a*d=d*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations